Associative Memory Design Using Support Vector Machines
نویسندگان
چکیده
منابع مشابه
STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملFace identification using support vector machines
The Support Vector Machine (SVM) is a statistic learning technique proposed by Vapnik and his research group [8]. In this paper, we benchmark SVMs on a face identi cation problem and propose two approaches incorporating SV classi ers. The rst approach maps the images in to a low dimensional features vector via a local Principal Component Analysis (PCA), features vectors are then used as the inp...
متن کاملDistinctive feature detection using support vector machines
An important aspect of distinctive feature based approaches to automatic speech recognition is the formulation of a framework for robust detection of these features. We discuss the application of the support vector machines (SVM) that arise when the structural risk minimization principle is applied to such feature detection problems. In particular, we describe the problem of detecting stop cons...
متن کاملRobust Anomaly Detection Using Support Vector Machines
Using the 1998 DARPA BSM data set collected at MIT’s Lincoln Labs to study intrusion detection systems, the performance of robust support vector machines (RSVMs) was compared with that of conventional support vector machines and nearest neighbor classifiers in separating normal usage profiles from intrusive profiles of computer programs. The results indicate the superiority of RSVMs not only in...
متن کاملDeep Learning using Support Vector Machines
Recently, fully-connected and convolutional neural networks have been trained to reach state-of-the-art performance on a wide variety of tasks such as speech recognition, image classification, natural language processing, and bioinformatics data. For classification tasks, much of these “deep learning” models employ the softmax activation functions to learn output labels in 1-of-K format. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 2006
ISSN: 1045-9227,1941-0093
DOI: 10.1109/tnn.2006.877539